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A boundary-value problem describing the onset of linear instability in a Bénard layer,

is considered. The solutions of the sixth-order differential equation arising are

expressed as Laplace integrals whose integrands involve a function satisfying a

second-order equation with six transition points. W.K.B. approximations to this"
function, valid in regions associated with each transition point, are related by using

global phase-integral methods. This allows solutions of the sixth-order problem to be

estimated by steepest descents, and leads to an eigenvalue condition. The eigenvalue

estimates are confirmed numerically by using the compound matrix method.

1. INTRODUCTION

When a Bénard layer has a non-uniform destabilizing -steady-state temperature profile,
convection sets in at a level where the local gradient sufficiently exceeds the adiabatic gradient
for the inhibiting effects of viscosity and thermal conduction to be overcome. If this level is
not at a boundary, the linearized equations governing the motion lead, in the Boussinesq-
approximation, to the boundary-value problem '

(D'—a?) W+Ra*(1—83) W = 0, )
where W—-0 as {—+oo, , (1.2)
Vol. 322. A 1566 23 [Published 13 July 1987

IR
; Jaq
The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Qﬁ%%
Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. SOP\ ®
www.stor.org


http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y o

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

282 P.BALDWIN

(Baldwin 1987). Here, { is a dimensionless boundary-layer coordinate, W and a are a
dimensionless vertical velocity and horizontal wavenumber respectively, R a Rayleigh number,
and D denotes d/d§. It is required to find the minimum value of the Rayleigh number for the
onset of instability, and the associated wavenumber.

The problem (1.1)—(1.2) has some astrophysical interest as A-type stars are believed to have
narrow convecting layers bounded by stable layers (Toomre et al. 1976). The method of solution
is, however, of more general interest because it may be applied in principle to similar problems
where the independent variable occurs quadratically in the coefficients of the differential
equation.

The assumptions Ra®? > 1 and R/a* = O(1) allow the solutions of (1.1) to be expressed as
Laplace integrals with an exponential exponent containing a large parameter, the rest of the
integrand satisfying a second-order differential equation having six transition points and also
involving the large parameter. This is described in §2 where details of the associated Stokes
and anti-Stokes lines are then presented. In §3 global phase-integral methods (Heading 1977)
are used to give approximations to solutions of the second-order equation throughout the
transformed plane, but excluding small regions containing the transition points. The validity
of the W.K.B., or phase-integral approximations, is discussed in §4 by using the theory of Olver
(1974). Solutions to (1.1) are then considered in § 5, where it is found that the Laplace-integral
solutions are valid in restricted sectors only of the {-plane. To apply the boundary conditions
(1.2), representations of the solutions are required across the {-plane, and these are found by
relating the restricted solutions in {-sectors of common validity. The Laplace integrals are
estimated by steepest descents and (1.2) applied to give the eigenvalue condition, which is then
solved.

Finally, in' §6, the estimated eigenvalues are used as initial estimates for an accurate
numerical computation direct from the boundary-value problem (1.1)—(1.2). The compound
matrix method, described for example by Drazin & Reid (1981), is used. It is found that even
for the lowest mode, where the large parameter assumptions are certainly not valid, the
estimates are surprisingly near the correct values, whereas for higher modes they are even better.

2. THE LAPLACE INTEGRALS AND THE TRANSFORMED DIFFERENTIAL EQUATION

Experience of boundary-value problems similar to (1.1)—(1.2) suggests that the critical value
of R for the onset of instability may be much larger than unity, and that a increases with R
as the mode number of instability is increased (see, for example, Chandrasekhar (1961), p. 313;
Duty & Reid (1964), p. 93). It is convenient to write

Ra® = pb, 2.1)

and a= po, (2.2)

n (1.1), where g will be regarded as a large parameter. It has been shown by Baldwin (1987)
that for an eigensolution of (1.1)—(1.2) with positive R, R > a* so that from (2.1) and (2.2)

0<a<l. (2.3)

On substitution for R and @ from (2.1) and (2.2), the solutions of (1.1) may be written as
the Laplace integrals

WL, f: C) = fc exp (uzl) fln @, 2) dz, (2.4)
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where f(u, 2, z) is a solution of

(d¥/dz?) —p*[(2—a?)®+ 1] f =0, (2.5)
and the contour C is chosen so that
[exp (uzg) {n¢f— (df/d2)}lc =0. (2.6)

The solution (2.4) may be estimated by the method of steepest descents if approximations to
fln,a, z) along the relevant paths of integration can be found. These are provided by the
W.K.B. method applied to (2.5) for large u. The W.K.B. approximations are normally valid
in restricted regions only of the z-plane, and it is essential here to link them across the z-plane
i.e. to use global phase-integral methods. The determination of approximations valid over such
large areas of the z-plane is the main concern in this paper. To this end, the rest of this section
is used to locate the transition points of (2.5) and to find the anti-Stokes lines associated with
them. ‘
Equation (2.5) has six transition points where (z2—a?)3+ 1 vanishes i.e. at

z=+4z, =++/[a?—exp (—¥mni)] for k=—1,0,1, (2.7)
and they are distinct for a in the range (2.3). The convention
argz, = }arg [a?—exp (—2kni)] : S (2.8)

will be used, where the argument on the right of (2.8) has its principal value. To emphasize
the symmetrical placing of the transition points about the real and imaginary axes it is
convenient to adopt the notations Z, the complex conjugate of z, to denote the mirror image
of z in the real axis, and z’ to denote the mirror image of z in the imaginary axis. Hence, from

2.7)—(2.

(2028, 7= =20 = —iv/(1-a2))
zZ,=2z_,4,
T (2.9)
2y =—z_,,

and Z,=—z,. /

This notation is used in figures 1-10 and tables 1-3.

In a region about +z;, but excluding the immediate neighbourhood of +z;, (2.5) has
solutions which for large u are asymptotic to the W.K.B. approximations associated with these
points, i.e.

__._1_.___ [ [? 2__ 2\3 1 }
S~ [(zz—a2)3+1]i exp{ L:Zk[(z a?)i+1]adzy. (2.10)
Associated with each transition point there are three Stokes lines
4
S [(z2—a?)®+1]idz = 0, ' (2.11)
+2

approx1mated near z = +z;, by the straight lmes

arg (z—[tz;]) = tnn+4kn—1 arg(+z,c), (2.12)

23-2
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for integral n, and three anti-Stokes lines

4
R [(z2—a?)3+1]idz =0, (2.13)
tzi
which near z = +z, bisect the angles between the lines (2.12).
For z on a§tokes line, it follows from (2.11) that
z AN
S [(z2—a?)3+1]idz = 0,
12
and because from (2.9) +z, ==z, and +z, =+z_, for k=11, the Stokes lines have
symmetry about the real axis. Also, because the integrand is even, it follows from (2.11) that

-2
S [(z2—a?)?®+1]idz = 0,

F2x :
so that the Stokes lines have symmetry through the origin. Hence the Stokes lines, and similarly
from (2.13) the anti-Stokes lines, have symmetry about both the real and imaginary axes.

Because [(z2—a?)®+ 1]} has no finite singularities other than the branch points z = + z,,, all

Stokes and anti-Stokes lines have one end at infinity unless they happen to connect transition
points. Furthermore no two Stokes lines, and no two anti-Stokes lines can meet, other than
at a transition point. Also from (2.11) and (2.13) the Stokes lines go to infinity in the directions

arg z = inm, (2.14)
and the anti-Stokes lines in the directions

argz =32n—1)m, (2.15)
for integral n.

Now because from (2.9) z, = iy/(1—a?), if z = i(1/(1 —a?) +y) where y > 0,
z Yy
fj [(z2—a?)+1]idz = fJ. [(y*+2yv/ (1 —a?) +1)3—1]idy = 0,
P 0.

so that the imaginary axis above z, is a Stokes line. Similarly, the imaginary axis between 0
and z, is an anti-Stokes line.

The positions of the Stokes and anti-Stokes lines in the first quadrant of the z-plane may
be deduced by elementary arguments described in the Appendix, and use of symmetry then
gives the results shown in figure 1. Continuous lines in this figure represent Stokes lines, and
broken lines represent anti-Stokes lines. The wavy lines denote branch cuts associated with each
transition point. It is necessary, in §3, when constructing tables 1-3, to label all the sectors
created by the Stokes lines, anti-Stokes lines and branch cut at each transition point. These
labels are also shown in figure 1 where the ‘bar’ and ‘prime’ notation used to describe the
symmetrical positioning of the transition points (see (2.7)—(2.9)) is further exploited. The global
positioning of the Stokes lines, other than helping to position the anti-Stokes lines, is not
important in the subsequent analysis. It is noted that the structure of the anti-Stokes lines is
unchanged for « in the range (2.3), but that there is a unique value a, ~ 0.86 of & in (2.3)
for which a Stokes line joins z, and z,. Figure 1 gives the position of the Stokes lines for
0 <a <a,. As a increases to a, the Stokes line joining z, and z; moves up to go through z,,
merging with the lower two lines from z,. For a > a,, the Stokes line from z, emerges above
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Ficure 1. Stokes and anti-Stokes lines in the z-plane.

z,, going to infinity in the direction arg z = {r, whereas that from z, emerges below z,, going
to infinity in the direction argz = 0. This change in geometry is continuous, except for slopes
at the transition points concerned.

3. THE APPLICATION OF GLOBAL PHASE-INTEGRAL METHODS

In this section, the W.K.B. approximations (2.10) associated with each transition point will
be related by using global phase-integral methods, so that f(x,a,z) in (2.4) may be
approximated throughout the z-plane. ‘

The convenient notation of Heading (1962, 1977) will be used so that the W.K.B.
approximations (2.10) are denoted by

(F2z4,2). (3.1)

These are made precise when the root in the exponent is specified, the second solutions of (2.5)
then being approximated by (z, * z;). If (£ z;, z) is dominant i.e. exponentially large in some

sector, this is denoted when appropriate by (z, +2;)4. Similarly, subdominancy is denoted by
a subscript s. It is also convenient to write

[a,b] = exp {,u J‘: [(z2—a?)?+1]E dz}, | (3.2)

for constants ¢ and b so that
(Zl’ z) = [Zv zo] (Zoa Z)’ (3-3)


http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y o

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

286 P.BALDWIN

for example, expressing a W.K.B. approximation associated with z, in terms of a similar
approximation associated with z,,.

Because all the transition points +z, are of order 1 i.e. are simple zeros of (z% —a?)3+ 1, all
Stokes multipliers have value i, and if a branch cut is crossed in the anticlockwise direction

(£zp,2) > —i(z, £ 2), (3.4)

to preserve continuity. These results are discussed by Heading (1962) who shows how they may
be used to trace an approximate solution locally round a transition point. |

Heading (1977) has given sufficient conditions under which an approximate solution, valid
locally round a transition point A, may be traced across to the neighbourhood of another
transition point B and expressed in terms of W.K.B. approximations associated with B. He
describes this process as tracing a phase-integral solution attached to A, across to B and
attaching the solution to B. Relations such as (3.3) are used when reinterpreting the solution
near the new transition point.

This process may always be carried out when the two transition points are joined by an
anti-Stokes line, as are the pairs z, and Z,, z, and Z,, and z; and Z] in figure 1. Sufficient
conditions are also described under which the process is valid when the transition points are
not joined by an anti-Stokes line, but these conditions are not met by the pair z, and z,, for
example, in that the configuration of anti-Stokes lines associated with them does not fully match
that given by Heading. Even so, it will be assumed in this section that the process may be carried
out for z, and z,, and a justification will be given in §4. The same assumption will be made
for the similarly situated pairs of transition points found by reflection in the real and imaginary
axes. '

Suppose that a solution of (2.5) is approximated near to z, on the anti-Stokes line joining
z, and z,, but excluding the immediate vicinity of z,, by (z,, z) + 4(z, z,) where 4 is a constant.
Suppose further that the root of the exponent of (z,, z) is chosen so that (z,, z) becomes dominant
is sector 1 of figure 1. The Stokes multipliérs iand (3.4) may now be used to trace this solution
locally round z, in an anticlockwise direction. The representations of this solution in each of
the sectors 1-7 are listed in the left column of table 1. If A = 0, the solution subdominant in
sectors 2 and 3 is represented locally round z,, and a similar result is given for the solution
subdominant in sectors 4, 5 and 6 if 4 = i. '

In sectors 1 and 7 the asymptotic approximation to the solution of (2.5) is (z,,2)4. Under
the assumption that this approximation remains valid as z moves away from z, towards z, and
into the sectors 8 and 9 associated with z;, (3.3) may be used to express this approximation
in terms of a W.K.B. approximation valid in sectors 8 and 9 but excluding the immediate
vicinity of z;. When this is done (z,, z) is subdominant in sectors 8 and 9, and may be traced
locally round z, in an anticlockwise direction giving the representations in sectors 8-8’ shown

in table 1 where :
B= [szo]- ' (3.5)
Repeating this process from z, to z; with
C = Bz, 2], (3.6)

gives the entries shown for sectors 1’ to 7. These may be found by circling z; in an anticlockwise
direction as was done for z, and z,, or in a clockwise direction by reversing the sign of the Stokes
multipliers and the sign of i in (3.4).
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TABLE 1. APPROXIMATIONS NEAR Z, AND THEIR REPRESENTATIONS NEAR OTHER
TRANSITION POINTS

(Each entry is preceded by the label of the sector in which it is valid. 4 is an arbitrary constant.)
B = [z,,z,] = 6~ exp{ig} C=B[z),z;] =87
D = [z,,2,] = exp{—2ip} E = A[z),2)] = 4 exp{2ip}
F = B[z,,Z,] = 6! exp{—2ip—ig} G = C[z3,Z;] = 62 exp{—2ip}

L (z1,2)a+4(2,21)s 1. D(z;,2)a+E(2, %),
, 2. (24,2)s+A(2,2y)q ‘ 2. D(z,,2)s+E(2,Z)q
o 3. (1+id) (2),2)s+4(2,21)a 3. (D—iE) (z,,2)s+E(2,2))q
—~ 4. (1+id) (z;,2)q + A(2,21)s 4. (D—iE) (z;,2)q+ E(2,7))s
- 5. (4—i)(z,2))a—14(2,, 2)s 5. (E+iD)(z,2,)q +iE(z,, 2)s
< 6. (A—i)(z,2))a+ (20, 2)s 6. (E+iD)(2,7))q+D(z1,2)s
s 1. (A=) (2,2)s + (21,2)a T. (E+iD)(2,7,)s+ D@ 2)a
% 8. B(zo,2), 8. Fz,2),
R 9. B(z,2), 3. F(z,2),
= Q) 10. B(zy,2)4 10. F(zZy,z)q
O 11. B(zp, 2)a +1B(2, 29)s 1. F(z,, 2)q—iF(z,Z))s
—~w 10°. —iB(z,24)q+ B(2y,2) 10'. iF(z,Zy)q+ F(Zy, 2)s
. 9. —iB(2,20)s+ B(20,2)a 9. iF(z,25)s+ F(Zy, 2)q
32z 8. B(z2)a 8. F(Zp2)q
9 v, C(z,2)s T. 6(z,2),
n.B . 2. C(z3,2)q 2. G(z},2)q
Q<0 3. C(z3,2)9—iC(z,2))s 3. G(z3,2)4+i6(2, 7)),
GE 4. C(z},2)s—iC(z,2)q 4. G(z3,2)s+iG(2,71)q
d<z,: 5. iC(z,21)s+C(z}, 2)q 5. —iG(z,2))s+G(z, 2)a
- 6. C(z3,2)4 6. G(z1,2)4
B = ’ = —t
7. C(z1,2)s 7. G(z1,2)s
The W.K.B. approximations attached to z,, z, and z; may now be traced across and attached
to Z;, Z, and Z; respectively, via the relevant anti-Stokes lines. The approximation in sectors
1 and 2 becomes oscillatory on the anti-Stokes line separating them, and remains oscillatory
along the anti-Stokes line into sectors 1 and 2. The dominancy of (z,, z)4 in sector 1 is retained
in 1, so that (3.3) with z, replaced by z, gives
(21, 2)a+A(2,2))s = [21,2,] (21 2)a + 4[24, 2,] (2, Zy)s-
& 4 This approximation may now be traced locally around Z,, and use of the notation
~Nd ) .
::1 D = [z,,7], (3.7)
N _
OF and E = A[z,,2,], (3.8)
2= | o L
i ()  gives the entries shown in table 1 for sectors 1-7. Similar representations near z, and z; with
L= O : -
=w F = B[z,,z,], ‘ (3.9)
and G = C[23,7,], (3.10)

complete table 1.

A check on the consistency of the results listed in table 1 may be made by tracing the
approximations attached to Z, and Z, across to Z, and Z; respectively. In sectors 1 and 7,
the asymptotic approximation to the solution of (2.5) is D(Z,,z)4, and in 8 and 9’ the
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approximation is F(z,, z)4. The former gives the approximation D[z,, Z,] (z,, z) valid in sectors
8 and 9, and the latter F[Z,,Z;] (Z;, z)s valid in 1" and 7’. From (3.7) and then (3.5) and (3.9)

D[z,,%)] (2, 2)s = [Zla 2y (Zgs 2)s»
= [z, 20] [20, Zo] (Zg5 2)»

= F(zy, 2)s,
as listed for 8 and 9. Similarly from (3.9) and then (3.6) and (3.10)

FlZy,21] (Z1,2)s = Bl20:Z1] (215 2)s

= B[Zo’ Z;] [Zi’ 2;] (Elv z)s’
= G(Z;, z)s'

as listed for 1’ and 7.

Table 1 may now be used to approximate throughout the z-plane, except close to the
transition points, that solution of (2.5) subdominant in sectors 2, 3, 2 and 3 (choose 4 = 0),
subdominant in sectors 4, 5 and 6 (choose 4 = i), or subdominant in 4, 5 and 6 (choose D = iE,
i.e. A =—i[z,,Z,]? from (3.7) and (3.8)).

To complete the later analysis it will be necessary to deal snmllarly with solutions
subdominant in all other sectors that may be extended to infinity.

Those sectors obtained by reflecting in the imaginary axis all those already dealt with i.e.
2-6, 2-6 may be accounted for similarly by the method described above leading to table 1.
The starting point is chosen by symmetry about the imaginary axis i.e. a solution of (2.5) is
approximated near to z] on the anti-Stokes line joining z; and z;, but excluding the immediate
vicinity of zj, by (z,2]) +4’(z}, z), where 4’ is a constant. The order of the arguments in the
W.K.B. approximations has been reversed as (z, z]) here becomes dominant in sector 1’ as may
be seen from the entry for this sector in table 1. The details are listed in table 2.

Alternatively it may be noted that figure 1 has symmetry through the imaginary axis apart
from the cuts at z, and Z, that must initially be chosen not to coincide with Stokes or anti-Stokes
lines. Hence representations of the solution of (2.5) in all sectors except 11 and 11 may be
obtained directly from table 1 by

(a) priming all sectors and transition points;

(b) renaming the constants A-G by using a prime, say;

(¢) changing the order of all arguments in (*,*) and [*,*]; and

(d) changing the sign of i in all coefficients.

The reason for (d) is that the tracing of solutions locally round transition points changes
direction on reflection in the imaginary axis. In () it should be remembered that (z})’ = z,
and (1’)" = 1 for example, because a prime denotes reflection in the imagiriary axis for both
sectors and transition points.

Table 3 deals with a solution subdominant in sectors 10, 11 and 10’. A table dealing with
a solution subdominant in the conjugate sectors 10, 11 and 10’ may be found from table 3 by
conjugating all sectors and numbers except z.

The coefficients of the W.K.B. approximations in tables 1-3 may all be expressed in terms
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TABLE 2. APPROXIMATIONS NEAR Z; AND THEIR REPRESENTATIONS NEAR OTHER
TRANSITION POINTS

(Each entry is preceded by the label of the sector in which it is valid. 4’ is an arbitrary constant.)
=B[z;,2] = 67*

= A'[21,7]] = A exp{—2ip}

= C'[2,2,] = 87 exp{2ip}

B, = [z, 2] = 6t exp{—ig}
=[z,z] = exp {2ip}
= B'[Zy, 2] = 0~ exp{2ip+ig}

A A

1. (z, 2)a+ 4 (21, 2)s 1. D'(2,2)q+E' (2, 2)s

2. (zaz;_)s'*‘A/(z,;’z)d L,
3. (1—-id) (2,2)s+ 4 (23, 2)a

2. D'(2,2})s+E'(Z},2)q
3. (D'+iE) (2,2)s+ E'(Z} 2)4

s N 4. (1-id') (2, 2))q +4'(21,2)s 4. (D'HIE) (2,7)a + B (25, 2)s
— 5. (4'+i) (21, 2)q+14'(2,21)s 5. (E'—iD’) (21, 2)a—1E (2, 2)s
< 6. (A’+§) (zl,z)d+(z,z,1)s 6. (E’—lD’) (Z1,2)a+D’(2, 7))
— T, (A +i) (25, 2)s+ (2, 21)a 7. (E'=iD') (2, 2)s+D'(2,2))q
ol= . B (s2), g, (),
e 9. B(z,2,)s 9. F(2,7%,),
e 10, B/(2,20)g 0. F/(z,2)a
T ®) 11. iB'(zg,2)4 11, —iF'(z,,2)q
=w 10. iB'(zy,2)q+ B'(z2, zo)s 19' —iF’(zo,2)a+F'(2,%,)s
9. iB'(z0,2)s+ B'(2,20)a 9. —iF'(z0,2)s+F'(2,Z)q
2“2 8. B'(2,2y)q 8. F'(z,Zy)q
@) ’ T 4 =
EQ 1. C'(z,2y)s L G/(z’fl)s
n'IL-) ! 2. C'(z,2y)q ) 2. G(Z,fn)d o
O< o) 3. C’(z,z,)d+.lC’(z1,z)s 3. G’(z,zl)d—}G'(zl,z)s
25 4. C'(2,2,)4+iC' (2, 2)q 1 G'(5,2,),~iG (21, 2)q
ﬁ% 5. —iC"(z,,2)s+C"(2,21)a 3. iG'(Z,,2)s+ G (2,Z))q
T 6. C"(z,2))q 6. G'(2,7))4
A= 7. C'(z,2y)g 7. G'(2,Z,)s

TABLE 3. APPROXIMATIONS NEAR Zy, AND THEIR REPRESENTATION NEAR OTHER
TRANSITION POINTS

(Each entry is preceded by the label of the sector in which it is valid. )
H = [2,,2)] = 87" exp{ig}
= —i[z,,2,] = —1 exp{—2ip—2ig}
L = H[z,,2,] = 6 Y exp{2ip+ig}

I—'_‘[zo""l] =—id~" exp{—ig}
= [Zy, 2o] = exp {2ip+ 2ig}
M Iz},7;] = —i6~! exp{—2ip—ig}

10. (z,2,)s 10. (J—iK) (2o, 2)a+ K(2, Z0)s
11. (z,20)s il' (J=iK) (2o, 2)g —1J(2,Zp)s
10°. —i(zg, 2)s 10°. (K+iJ)(2,Z)a+ J (20, 2)s
o 9. ~i(z0,2)q 9. (K+iJ) (2,20)s+J (@ 2)a
< 8. —ggz.,, z;d+ ((z, 2 5. 5((_:, zo)>s+IJ<§zo,_ 2
1 8. —1(zy,2)s+ (2, 29)q 8. J(z,2 s+_ 2,2)q
< 9. (2,20)q 9. (J—iK)(Zp,2)s+ K(2,Z)a
S E ; ggz,z,gs | % IL‘Ez z,g
. H(z,2,)4 - 2. L(z,2,
= 3. H(z,2,)q +iH(z:, 2)s 3. L(z,7)a~iL (%, 2)s
QO 4. H(z,2))s+iH(z,,2)q 4. L(z,7)),—iL(z),2)q
T O 5. —iH(z,,2)s+H(z,2))4 5. iL(z),2)s+ L(2,7,)q
H ) 6. H(Z)zl)d § L(zygl)d
" 7. H(z,2,)s 7. L(z,7)s
<z . I(Z},2) 1. M, 2),
%9 2. I(Z,,2)q 2. MZ,2)q ,
== 3. Kz}, z)q— lI(Z,zl)s 3. M(z,2)q+iM(2,7))s
03s 4. 1z, 2)—il(z,2)q . M(Z,2)s+iM(z )
8(’3 5. il(z,21)s+1(21,2)q 5. _lM(zszl)s+M(zl»z)d
4 6. 1(z},2)q 6. M(z,2)q
EE 7 I5,2)s 7. Mz, 2)s

24 ’ Vol. 322. A
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of three unknowns, and this considerably simplifies their use in §5. To this end, we define 4,
p and ¢ by
[0,8] =4,

[0,z,] = exp{i(p+¢)}, (3.11)
[ﬂ, zl] = exp{iﬁ})

where f denotes the point where the anti-Stokes line joining z, and Z, cuts the real axis (see
figure 1). Here 8, p and g are real because [(z2—a?)®+ 1]t is real for z on the real axis between

0 and 8, and 0 and z,, and, § and z,, are joined by anti-Stokes lines. Because [(z2—a?)®+ 1]
is an even function of z '

[-8,0]= [0, 81,
[20) O] = [O, Zo], (312)
and [z, = Al = [B,2,].

Also because the integral is pure imaginary

r’ [(22 o2+ 1]hdz = —r' [(22—a2)p+1]Hdz,
B A

Z 2
2_ 2341 dz = — 2 _2)341]tdz,
ie fﬂ[(z 2+ 1]dz L[(z )+ 1]z
SO that [zp ﬁ] = [ﬂ’ Zl], }
| (3.13)
and similarly zZ,—pl =[-8 2]

Use of Cauchy’s theorem round a path 0§z, 2,0 and similar paths found by reflection in
the real and imaginary axes, together with results (3.11)—(3.13), give

(21 2] = [Z0,Z1] = 67" exp {iq}’} (3.14)

and (23, 2o) = [Z0,Z,] = 0 exp{ig}.

Results (3.11)—(3.14) allow the coefficients defined at the top of tables 1-3 to be written in
terms of 4, p, and ¢, as shown. . : '

The cuts shown in figure 1 may be inserted in any convenient way. Now that the W.K.B.
approximations have been traced round each transition point, the cuts may be deformed onto
adjacent anti-Stokes lines so that the sectors 4, 4, 4, 4, 10’ and 10’ disappear. This is done
in §4 for convenience when presenting figure 2, and subsequent calculations from tables 1-3
are carried out with this adjustment.

4. THE VALIDITY OF THE GLOBAL PHASE-INTEGRAL METHODS

The error analysis necessary to justify the procedure adopted in §3 is given by Olver (1974,
chapter 6). .

Let the domain A consist of the z-plane with the small circular regions |z—(+2z;)| <,
centred on the transition points, removed. Suppose further that A is rendered simply connected
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by cutting the z-plane from each transition point to infinity, as indicated in figure 2 by wavy
lines. This ensures that (e, 2) = (ZFma?)3+1, (4.1)

is regular and non-zero in A, and that the function

Ewa,z) = p f e, 2) dz, (4.2)

is a regular function of z in A, It then follows from theorem (11.1) (Olver (1974), p. 222) that
(2.5) has solutions f;(u, &, z),j = 1,2, regular in A, given by

Sy, a,z) = g7(a, z) exp{(— 1) (n, @, 2) {1 +€;(p, 2, 2)}, (4.3)

IO E—

provided that the reference point a; may be joined to z by ag- progresswe path in A, and that
the integration in (4.4) is along this path.

The constant of integration in (4.2) may be arbitrarily assigned. Suppose that it is chosen
to vanish at a transition point z = +z; so that, in the notation of §3,

£74(a,2) exp{E(p, @, 2)} = (£ 2, 2). (4.5)

If it can be shown that |e;(#, &, z)] < 1 in some subdomain of A, then the solutions f;(x, «, z)
are approximated by the W.K.B. approximations (2.10) in that subdomain.

Suppose, without loss of generality, that in (4.5) the transition point is chosen as z,, and that
the determination of gi(a, z) is chosen that makes ££(u, &, z) > 0 in sectors 1 and 7 of figure 1.
With the notation

where ey 2), |1t 22|

E(u, o, z) = u+iv, (4.6)

where u and v are real, the anti-Stokes lines through z,, and hence those through Zz,, are the
curves u = 0. Those through z, and Z,, and, z; and Z;, are then from (3.14),u =4, =—Ind >0
and u = 2u, respectively. Because £(g,, z) is a regular function of z in A, no two curves of
the family « = constant can meet in A. Furthermore, because u is a harmonic function, it has
no extreme value at a point of A, and so no curve z = constant is closed. The curve therefore
terminates at infinity or on a boundary of A. Details of the curves « = constant are given in
figure 2, where it is now convenient to choose the cuts from the transition points along
anti-Stokes lines as indicated by wavy lines.

For the solution f; (¢, a, z) of (4.3), suppose that the reference point g, in (4.4) is chosen at
infinity on the positive real axis. It is seen immediately from figure 2, that ¢, may be joined
to z by a £-progressive path in A, i.e. a path consisting of a finite chain of R, arcs for which
u is non-decreasing, for any z€ A except in the sector between the anti-Stokes lines going to
infinity from z,, and its conjugate sector. There are also narrow shadow zones of width O(e)
caused by the small circles about the transition points, on either side of the cuts from z,, Z,,
2, and Z;, and to the left of the anti-Stokes lines from z, and Z, going to infinity in the directions
argz = ¥ and —32n respectively. Let A, denote the set of points z that may be reached from
a, by a £-progressive path in A.

For points z on a £-progressive path sufficiently far away from the origin, |z| > r,, say, the

24-2
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FIGURE 2. Lines: ———, curves ¢ = Conistant; s, cuts.

paths may be chosen to make an angle no greater than an acute angle §,, say, with the radius
vector from the origin. Hence, because from (4.1)

75 ()

is regular and bounded away from zero for z€ A such that |z] < r,, and is O(1/2z°) as z—> o0,

zl1 02 (1 o d|z| secl, f°° d|z| secl,
T R e e

p
[\ \

q |2I° |[®
= K, +K, 7}
; S L%.F K,
ok :
e g < K, say,
O -
anf@) where K, K, K,, and K are positive constants with K, = 0if |z| < r, and K, = K; = 0 if z lies
=w to the right of Z, z; with |z| > r,. The right-hand side of (4.4) is thus less than exp (K/u)—1,

giving |e, (¢, @, z)| < 0(1/p) as p— 0.

It follows that for sufficiently large #, f,(x,®,z) is approximated by that W.K.B. approxi-
‘mation associated with z,, which was denoted by (z,,z), in sectors 1 and 7 of figure 1, for z€ A,.
This W.K.B. approximation is then a valid approximation to f;(x,,z) in sectors 8 and 9
associated with z;, so that the attachment to z, used in building table 1, is justified. It is also
noted that for the case 4 = 0 in table 1, the same W.K.B. approximation, which becomes

PHILOSOPHICAL
TRANSACTIONS
OF
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subdominant in sectors 2 and 3 associated with z,, is a valid approximation to f, (%, , z) as
z—> o0 in these sectors.

Because the choice of the constant of integration in (4.2) is arbitrary, z, can be used in place
of z, in (4.5), resulting in all u-curves in figure 2 being relabelled by the addition of a constant
[2¢5 2,)- The same argument then justifies the attachment to z; of the W.K.B. approximation
associated with z,. Similarly, the W.K.B. approximations to f,(#,, z) associated with Z, and
Z, may be attached to Z, and Z; respectively. :

To deal with the other relevant choices of 4 in table 1, i.e. 4 =iand 4 = —i[z,,Z,]* when
the approximations listed are subdominant in sectors 4, 5, 6 and 4, 5, 6 respectively, the
reference point ¢, may be chosen at oo exp .(}in) and its conjugate. Although A, is modified,
it is unchanged to the left of # = 0 and the same validity results apply.

For the solution f,(u, a,z) of (4.3), suppose that the reference point g, is chosen at infinity
on the negative real axis, and let A, denote the set of points in A such that a, may be joined
to z by a £-progressive path. On such a path # is now non-increasing, so that A, consists of
A with the sectors between anti-Stokes lines going to infinity at z;, Zj, z, and Z, removed,
together with narrow shadow regions caused by the small circles about the transition points
as before. In (4.4), le;(#,a,z)| < O(1/p) and p— 00, so that f,(u,a, z) is approximated in A,
by the W.K_B. approximation, which in sectors 1’ and 7’ of table 2 is denoted by (z, z}) 4. Because
the approximation is valid in sectors 8’ and 9’ associated with z,, the attachment to z, is justified.
Similarly, the attachment to z,, Z, and Z, of approximations associated with z,, Z; and Z,,
respectively, is valid. The case 4" = 0 of table 2 is justified by this choice a, = 00 exp (in),
and the other relevant cases 4’ = —i and i[Z},z]]?, by the choices ¢, = 00 exp (¢ni) and
oo exp (—32in) respectively.

Because the anti-Stokes lines joining the conjugate pairs z,,Z, ; z, Z,; and z;, Z;; all lie in both
A, and A,, except for the segments lying within the small circles |z—(tz,)| <e¢, the
reattachment of W.K.B. approximations via these lines, carried out in the construction of
tables 1 and 2, is justified. ' '

All the global phase-integral methods used in the construction of tables 1 and 2 are thus
justified. Furthermore, because the W.K.B. approximations used are valid throughout A, and
A,, they are valid in the neighbourhoods of all the transition points, and this provides a further
check on the relevant entries in tables 1 and 2. It is also interesting to note for instance that
if the cuts at z, and Z, were changed to run along the anti-Stokes lines going to infinity in the
directions arg z = +2n, the region of validity of the W.K.B. approximation to f, (u, @, z), with
g, chosen at infinity on the positive real axis, is all of A excluding only the narrow shadow regions
either side of each cut.

To justify the results listed in table 3, a, may again be chosen at infinity on the positive real
axis, but g, is chosen as 00 exp (3in). This restricts A, to the right half-plane together with the
regions to the right of the cuts at z, and Z,, but excluding the small circular regions about the
transition points-and the narrow shadow regions associated with them. In particular, there is
a narrow shadow region to the right of the imaginary axis joining z; and Z,. Both A, and A,,
however, include sectors 8 and 8 associated with z, and Z, respectively, and the attachment
to Z, of the W.K.B. approximation associated with z, is justified. The reattachment from z,
to z, is valid as in previous cases. Finally the reattachment from z, to z; and from z] to Z; involves
the W.K.B. approximation associated with f, (, &, z) only, and is valid as before. This completes
the validation of table 3, and the table obtained by conjugating table 3, is validated by a
‘conjugate’ argument.
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5. ASYMPTOTIC ESTIMATES OF THE EIGENVALUES

Asymptotic estimates must first be found for the solutions (2.4) as {— % 00. To obtain these
from the information gained about f{u, a, z) in § 3, the contour C must be chosen to satisfy (2.6).
Because f and df/dz cannot have a common zero z (otherwise from (2.5) f= 0), C must
terminate at infinity. From tables 1-3, if f is subdominant in any one anti-Stokes sector at
infinity, it is in general dominant in all other sectors at infinity. Hence although by selecting
S appropriately, one end of C may be chosen arbitrarily at infinity, the other end must be
chosen to terminate at infinity on an anti-Stokes line where fis oscillatory, and (2.6) satisfied
by the factor exp (#z{). Condition (2.6) can then be ensured for a restricted sector only of the
¢{-plane, and the problem of relating solutions in different {-sectors arises. A similar difficulty
and its resolution were encountered by Baldwin & Roberts (1972). The same method of
resolution is used here.

Let Ry denote the ray

Ry ={zeC:argz=32N—-1)n for NeZ}, - (5.1)
and D the anti-Stokes sector
Dy ={zeC:l2N-1)n<argz<}2N+1)n for NeZ}, (5.2)

where C and Z denote the set of complex numbers and the set of integers respectively. The
contour C may then approach infinity along R if

(2n—1iN+%) m< arg{ < (2n—iN+¥)n for neZ. (5.3)

Let Iy denote a contour that starts at infinity on Ry and ends at infinity on Ry,,, and let
Y, n+r forr=1,2,8,4,5,6 denote a contour that starts at infinity on Ry and ends at infinity
in the sector Dy,,. Then in the notation of (2.4), for arg{ satisfying (5.3), six linearly
independent solutions of (1.1) with contours ending on Ry are given by W(ul, fy1r; ¥n, N+r)>
where fy ., denotes that solution of (2.5) that is subdominant in D,,,. Because fy(u,, z) is
a regular function of z for all finite z, fy (#, a, z exp {2rni}) = fy (1, &, z) for n€ Z, so that if N
or r is changed by a multiple of 8, the solutions W(u{, fy1,; ¥, n+s) are unchanged. Hence
the subscripts for Ry, Dy, I'y, Y5, n+r and fy,, are to be calculated modulo 8.

Define

~u§N)(ﬂ’a3 g)_ ‘

uf™ (u, a, )
UM (g,a,) im0

,a3 = . b

g 0,0

| 4™ (g, 2, 8) |

where uM (u,0,8) = Wpd, fusr; Y, ner) T=1,2,3,...,6,)

for { satisfying (5.3).
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If
(2n—IN+8)m < argl < (2n—iIN+Y)m, (5.5)

then the solution matrices U%®) and U™+ associated with the rays Ry and Ry.,, and defined
according to (5.3), are both convergent, as is the solution W(ug, f; I'y), where fis any solution
of (2.5). Now : ‘

W(ug, fniIy) =0,

because I'y, may be deformed to infinity in Dy, and because (2.5) has only two independent
solutions, all the solutions W(ug, f;;Iy) for j# N are proportional. This fact plays a
fundamental role in relating the solutions U™ and U¥*Y for {in (5.5) (cf. Baldwin & Roberts

1972). _
From the definitions of I'y and vy, yis

YN+1, N+14r = 7N.N+1+r_rN for r=1,2,3,...,86,
so that

W(/‘§afN+r+1§'}’N+1,N+r+1) = W(/‘§afN+r+1§7N,N+r+1) — W, fnir1s In)s
= W(/‘§afN+r+1;7N.N¥r+1) — K, (u,0, N) W&, fy+13In) '
for r=1,2,3,...,6, .(5'6)

where from above K, is a constant of proportionality and therefore independent of {. Because

S+, is subdominant in Dy,;, Iy may be chosen to terminate in D, rather than on Ry,
for the solution W(ug, fi1; Iw), and then

W, farns Tw) = WG, fyers Vo, we1)- ()

Also Wwe, fnsr:Yn, n+1) =0, (5.8)

because Yy y., may be deformed to infinity in Dy, Hence the use of (5.6)—(5.8) with the
definition (5.4) gives

UMD (y,a,8) = T(p,0,N) UM (p, 0, ), (5.9)
[—K,(4,a,N) 1 0 0 0 O]
—Ky(w,a,N) 0 1 0 0 0
. —Ky(u,a, N) 0 0 1 0 0
where T(pu,o,N) = ) (5.10)
—K,(u,2, N) 0 0 0 1 O} -
~Ky(u,a,N) 0 0 0 0 1
| —Kg(p,2,N) 0 0 0 0 Ol
and Kr(/“’“a N) = ~W(/L§,fN+r+1;FN)/W()“g,fN+1;rN)' ' (5'11)
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From the results of §3 listed in tables 1-3, the vectors
K, (u 2, N)T
Ky(pu, o, N)
' K (u,0, N C ’
K(ﬂsa: N) = a(ﬂ ; ’ ‘ (512)
)

K, (p o0, N
Ks(ﬂ, o, N
| Kg(p,, N) |

may be estimated to leading order for large p. Suppose that I'y in (5.11) is chosen to lie in
Dy far from the origin, so that asymptotic estimates may be used for fy,,,,(#,a,z) and
S+, 2, z). Because, to leading order, the ratio fy,,.,(#,a,2)/fy41(# @, 2) is independent

of z
’ fN+r+1(ﬂa “’Z)
K, (u,, N) o (420, 2) as p—>, (5.13)

for sufficiently large z in D . To facilitate these calculations, the essential information contained -
in the tables 1-3 is shown in figures 3-10. Each figure shows the eight sectors D, for
N=0,1,2,...,7 covering the z-plane. For large z, D, is the extension to infinity of the sectors
3, and 3, of figure 1. Similarly D, is associated with sectors 4, 5 and 6, D, with sectors 10, 11 and
10’, D, with sectors 4/, 5’ and 6’, D, with sectors 3’ and 3’, D with sectors 4’, 5" and 6’, D,
with sectors 10, 11, and 10’ and D, with sectors 4, 5 and 6. In each sector is written a W.K.B.
approximation. Figure (j+3) shows the W.K.B. approximation to f{u,a,z) of (2.5) that is
subdominant in D; and its valid extension from the tables into all other sectors, for
7=0,1,2,...,7. For these results the cuts have been deformed onto anti-Stokes lines as
described in the last paragraph of §3, and shown by wavy lines in figure 2. Because f} is
approximated by a W.K.B. approximation subdominant in Dy, (5.11)—(5.13) with figures
3-10 give

[ —id~1 exp{ig} ] 61 exp{—ig} | i
—io-2 61 exp{—ig}
—is-? s vexp{—i
K(n,a,0)~|  Rpen~| P ]
—i6—2 | ‘ | exp{—_2ip—2ig}
—i0~! exp{—2ip—ig} —id(exp{—4ip}+1) exp{—ig}
| —exp{—4ip} i | —id exp{—ig} i
1 “ 7] N [ 14 exp {4ip}
1 5 | 8-t exp{2ip+ig}
28 cos {2p+2¢} exp {ig} | —ig-t
Ku,a,2) ~ PF 243 expig , K(p,a,3)~ ,
—iexp{2ig} | —i0—2
—iexp{2ig} —ié~2
| —iexp{2ig} ‘ 1 ‘ L —0~1exp{—ig} -
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[0~ lexp{—2ip+ig} ] —i6~1 exp{—2ip—ig} ]
—i0~2 exp { —4ip} —id~ ! exp{—2ip—ig}
—ig-t —4 —is-1 —9ip—i
K(/"‘:“a 4) o~ ' exp{ IP} ) K(/I’:a’ 5) ~ l exp{ ’ lq} ’
—id~2 exp{—4ip} . —exp {—2ip— 2ig}
—0 lexp{—4ip—ig} — 20 cos 2p exp{—ig}
| —exp{—4ip} i | — & exp{2ip—ig} i
"1 1 "1+ exp {4ip}
1 ‘ : —id~! exp {4ip+ig}
| —2i6 cos{2p+2q} exp{2ip+i | —is-2 4i
T {2p+ 24} exp{2ip +ig} CKuan~| exp {4ip}
—1iexp {4ip + 2ig} —i62 exp {4ip}
—1i exp {4ip + 2ig} _ —i6~2 exp {4ip}
| —i exp {4ip +2ig} i | —id~1 exp{2ip—ig}

(5.14)

The solutions of (1.1) are regular functions of { for all finite {, hence the solutions
U®)(u,a, z), represented by Laplace integrals as shown by (2.4) and (5.4) in the range (5.3),
may be defined throughout the z-plane by analytic continuation. Hence from (5.4),
UW* (4 a,z) = UN) (4, a,z), so that from (5.9)

I T N47-) =1, BNCET)

j=0

for any integer N where I denotes the sixth-order unit matrix. An attempt to use (5.15) to check
the calculation of T'(u,a, N) when the leading approximations (5.14) were used in (5.10),
failed. This is because 8, defined in (3.11), is exponentially small for large x, so that many of
the elements in (5.14) are exponentially large. Although the leading-order terms of the matrix
product in (5.15) cancel, the remaining terms are not sufficiently small to approximate the unit
matrix. The calculation of higher-order terms in (5.14) appears to be difficult. The inclusion
of further terms with the W.K.B. approximations used to construct tables 1-3 gives no
immediate improvement, and more accurate estimates from (5.11) are required. This loss of
accuracy suggests that repeated use of (5.9) using leading approximations to T(#,, N) may
notbeadequate torelate solutions as {1 00. It will be seen below, however, that one application
only of (5.9) is required and that the leading order approximations are adequate. '

Consideration of (5.3) with the choice n = 0 shows that arg{ = 0 lies within the range for
N =3, 4, 5 and 6, and that arg{ = = lies within the range for N=—1, 0, 1 and 2. A single
application only of (5.9) is thus required for N = 2 if U® is used to describe the solutions for
arg{ = 0 and U® for arg { = n. Alternatively, the choice N = 6 may be used if U® and U®
are used to describe the solutions when arg { = 0 and arg { = & respectively.

It remains to estimate the solutions U® and U®, or U® and U®, for arg{ = 0 and

2§ Vol. 322. A


http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

298 ' ... P.BALDWIN

3 D, 4 S D,

D, 8 1el9(zy, 2)4 D, D, 81el9(z,, )4

872z}, 2)g —i(z; 2,)4 8-z}, 2)q

D,

(21, 2)s 87%(z), z)q i(z, 2;)q

2i cos 2¢(z, Z,)q
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—id=le™l(z], 2)q 81€!(z, 2))q

8-2(2! zl)n‘l

—id~e74(z], 2) 871e19(z, 2))q

—id—lem8P1(z), 2), s-1erPHe(s 7)), —2i cos2p(Z}, 2)a

/—2i cos (2p+2¢) —id—ledirtia

Dy D, D, D,
4 X (7:0’ z)d X (20’ z)d
< D D,
—_ Ficure 3. Subdominancy in D,.
< Ficure 4. Subdominancy in D,.
> E Ficurk 5. Subdominancy in D,.
2 23 Fi1Gure 6. Subdominancy in Dy,
e
= O ,
O arg { = =, respectively, as [{] > 00. The elements of these vectors are, from (2.4) and (5.4),
=uw

approximated in the various sectors D, by integrals proportional to

N P e gira i )}
Jormarrmenlules [ te-ars e} (5.16)
A steepest-descent analysis for large u is appropriate. There are saddle points at

z= [+ (E—1)hh
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7 D, 8 D,

D,

i(z}, 2)a 873z, 2))q

—
NP
5 —iet?(Z}, 2)g R CEAY
=
o
= U D D,
T Lisieniag, 2)
F w 6 Dc
- 12)
5z
=0
=
a5,
85, 0 9 D, 10 D,
oz 2i cos (2p+2¢)
=<
= Ds X (20, 2)a D, D, Dy
i§~1e¥PH (2], 2)4 81PN (2, 7)), —i(1+e7?) (2, 2))4
i8-1e2P44(z], 7)4 8-1e7P(z, 7)),
8-le™l(z, 7)), 8-%e7P(z], 2),
|
_ g .
<[ ) Dy D, D, | d-1e~4p-14(3, 7)) D,
i D, D,
> Ficure 7. Subdominancy in D,.
4
O : Ficure 8. Subdominancy in Dy.
o — Ficure 9. Subdominancy in Dy.
O Ficure 10. Subdominancy in D
. y in D,.
LT O
= v )
—_— For large {, these are located asymptotically at
<Z
%9 z=15, =GexpRkni) for k=0,1,2,...,5, (5.17)
ar
83 5  and the curves of steepest descent near s, are given by
72
gg arg (z—s;) = —targ{+tkn+an  for integral n. (5.18)
=
o=

2§-2
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If the contour C of (5.16) is deformed to pass over s, along a steepest path given in (5.18),
the contribution to (5.16) is proportional to

wy, = {4 exp §uld et} (5.19)

When arg { = 0, w,, is dominant for £ = 0, 1, 5, and subdominant for £ = 2, 3, 4, and when
arg{ = m, w, is dominant for £ = 1, 2, 3, and subdominant for £ = 0, 4, 5.

For those sectors in which the solution under consideration has [(z2—a?)3+ 1]t ~ —2% as
z—>00, the steepest curves are those associated with exp (z{—1z%), ie. JF{z{—1z%} =
JI{8¢3 exp (Rkmi)} for k = 0, 2, and 4 from (5.17). If z = r exp (i6) they satisfy

7¢] sin (6 + arg §) —1r* sin 46 = 3|3 sin (4 arg {+ Lkm), (5.20)

for k = 0, 2, 4. Similarly for those sectors in which [(z2—a?)®+ 1] ~ 2% as z—> o0, the steepest

curves satisfy
7¢] sin (0 + arg ) +1r* sin 46 = 3¢J} sin (4 arg + 3m), (5.21)

for £ =1, 3, 5. These curves are shown for arg{ = 0 and arg{ = = in figures 11 and 12. In
each case § =0, 7 is a steepest curve, and there is symmetry about the real axis. Local
information for the saddle points is given by (5.18). Arrows in both figures point down a steepest
gradient. It should be noted that equations (5.20)—(5.21) have been deduced on the assumption
that z is large but this is not true along the whole real axis, which it is claimed is a steepest
curve. The relevant equations with approximation for large { only are

z 4
f{z§+f [(z2+§2)3+1]§dz} =0,
i 2 2=¢hexp Gkri)
z
ie. f{zg—gi exp (3kmi) +I [(z22—a?)3+ l]ﬁdz} =0,
£8 exp Gkni)

for k=0,1,2,...,5, and these are satisfied for all real z when arg{ = 0 with £ = 0,3, and
arg{ = n with k = 2, 5.

From thedefinition (5.4) the solution #{™) hasitsintegrand in (5.16) subdominantin Dy, and
from figures 310 is dominant in all other sectors through which the contour C = y 5y, passes.
Hence from (5.2) if N+r is even, [(22—a?)®+1)i~—2% in Dy, Dyyry1s Dyyryss - and
[(22—a?)3+1}i~ 22 in Dyypy9, Dyyrygs -, the signs being reversed if N+ is odd.

Consider the solution matrix U® for arg { = 0. For 4{® the contour is deformed to pass down
R, until it meets the curve of steepest descent over s,. It then passes over s, and goes to infinity
in D, via the steepest curve (see figure 117). For u{® the contour is deformed down R,, over
s, in Dy (figure 117) and then to infinity in D over s, (figure 11%) via curves of steepest descent.
Similar paths can be found for the remaining components of U® from figure 11, and similar
paths for the components of U® for arg{ = & from figure 12. The important information
required is the list of saddle points traversed by the contour for each solution, and this is shown
in table 4. The leading-order contributions to the solutions from the saddle points is given by
(6.19), and from the statements following (5.19) the only solutions from U® when arg{ = 0
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g

Ficure 11-. Steepest curves associated with exp (z{ ;—{z‘); (arg¢ = 0).

Ficure 11+, Steepest curves associated with exp (z{+}z%); (arg{ = 0).

127 l22+

3

FiGURE 12~. Steepest curves associated with exp (z§—1z*); (arg{ = m).
FicUre 12+, Steepest curves associated with exp (z§+3z*%); (arg{ = 7).

and U® when arg{ = © that will satisfy (1.2) are «® for r =1, 2, and 3, and »{» for r = 4,
5, and 6. Now from (5.9)—(5.10)

4P = = Ky, 0, 2) D+ ),
uga) =- K2(/"s a, 2) ugz) + “:(i2)>
ud = — Ky(p,a,2) u® +ud,

and hence the only solution to the boundary-value problem (1.1) with (1.2) for large p, is
provided by #{ or «{? if the parameters & and p are chosen to satisfy

Ky(u,,2) = 0. (5.22)
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TaBLE 4
solution saddle points traversed

uf® S2
u;a) S35 53
u:(ia) Sa5 535 54
u?) S25 935 54, 55
ugS) So> 525 53
u® 51
ugz) 5
ugz) S0 525 55
u® Sos 535 545 55
u?) S0 52> 55
ugz) Sos 55
ul® So

From (5.14) this gives ,
cos (2p+2¢) =0, (5.23)

because & # 0, and (3.2) and (3.11) then give
V(1-af) ' ‘
cos {2,uJ V[1—(a?+4?)?] dy} =0, (5.24)
]

because the contour of integration may be chosen along the imaginary axis with z = iy. If the
alternative solutions U® and U™ are used, the eigenvalue condition becomes K;(¢,a,6) = 0,
which again gives (5.23).

Condition (5.24) gives

!

V(1-a?)
p=_2n—1)m / 4f vV [1—(a*+y?)%]dy for positive integral n, (5.25)
0 .

because 2 > 0. Equations (2.1) and (2.2) then give the critical values

4
’

R, = min {(2n— 1) n/4Vafvu_a2) VI[1—(a2+y?)?%] dy} (5.26)
V(1—ad) .
a, = (2n—1) mxc/4 J; V[1—(a2+y%)3]dy, (5.27)

where a, is the value of a that minimizes (5.26).
Numerical integration with Simpson’s rule yields

V(1-a?)
max \/aJ vV [1—(e®+y?)3] dy = 0.5343,

0<a<l 0

when a=a,=0.514,
and (5.26)—(5.27) then give the following estimates for R, and a,,.

R, ac

4.67 0.54
3.78x10* 1.62
2.92x10% 271
1.12x10* 3.79
3.06 x10* 4.87
6.83x10* 5.96

DOUHR WN = 3
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Also as n—> 00, R, ~ 74.7n* and a, ~ 1.1n. Clearly the large-parameter assumptions made to
obtain these results are not valid for the lower modes. It will be seen in §6, however, that apart
from the lowest they are surprisingly good, and even the lowest-mode estimates are of the right
order, and provide a good starting point for a numerical search. Attempts to improve the
estimates (5.26) and (5.27) require an improved estimate (5.23) from (5.22). This leads back
to the difficulties associated with (5.15) described earlier.

6. NUMERICAL RESULTS

Because (1.1) involves even-ordered derivatives, and § occurs in the coefficients as {2 only,
the eigensolutions of (1.1) with (1.2) are either even or odd functions of {. The problems of
obtaining numerical results direct from (1.1) are thus considerably eased by working on the
interval (0, c0) with the initial conditions

DW = D3W = D’W =0 when { = 0 for even modes, (6.1)
and W = D*W = D*W =0 when { = 0 for odd modes. (6.2)

The problem is then of similar form to that solved by Baldwin (1987). The compound matrix
method (see, for example, Drazin & Reid (1981), pp. 311 —317) may again be used with one
change i.e. {—¢? in the coefficient matrix, and similar minor adjustments in the boundary
conditions. It is again convenient to integrate in the reverse direction from { &~ 10 to { = 0.

Starting from the asymptotic estimates given at the end of § 5, the following results, believed
to be correct to the number of figures shown, were obtained.

n R, a,

1 9.78136567  0.72605
2 411.720155 1.6791
3 3006.709534 2.7379
4 11382.695328 3.8130
5 30916.2534 4.8916
6  68778.117 59T

The odd-numbered modes were found to be even in  and the even-numbered modes odd.

The lowest mode’s estimates were inaccurate as expected, but were sufficiently accurate to
give rapid convergence to the results obtained. The second mode estimates for R, and g, have
errors of about 409, and 59, respectively, and thereafter steadily improve.

I thank Professor P. H. Roberts, F.R.S., of the School of Mathematics, University of
Newcastle upon Tyne, for suggesting the investigation of this problem, and for the interest he
has shown during its solution.

APPENDIX

A description is given here of a method by which the Stokes and anti-Stokes lines defined
in §2 may be determined in the first quadrant of the plane.
It is first noted that the transition points (2.7) all lie on the curve € defined by

2’ =a?—exp(—it) forrealt, (A la)

-f —_ : 3 -
or if z = r exp (i6), ™ —2a%2 cos20+at—1 = 0. (A 1d)
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This curve has symmetry about both the real and imaginary axes, and for « in the range (2.3)
consists of a single loop enclosing the origin. At z,, the angle between the radius vector from
the origin and the positive direction of the tangent to ¢ is ®—6,, where

0, = arctan [(a%+42)/a%4/3]. |

Hence the angles between the negative tangent to € at z,, and the Stokes lines given by (2.12)

are
47 10% 16x

where : 6, = tarctan [y/3/(2a2+1)].
It may be shown that §,—$6, is a monotonic increasing function of & in (2.3) so that

2n 51
3 < 0,—%0, < 15

Thus dnly one of the Stokes lines leaves z, inside €, and hence two of the anti-Stokes lines leave
z, inside €. Whether any of these lines subsequently cross € may be deduced by considering
_ the integral

I= fz [(22—a?)3+ 1]idz, (A2)

along %, and by using the definitions (2.11) and (2.13) together with Cauchy’s theorem.

To make the integrand of (A 2) precise, a cut must be placed at each transition point. Suppose
that these are chosen as indicated in figure 1 by wavy lines, which all lie outside €. Without
loss of generality, that determination that is positive when z = 0 is chosen for the following
argument.

Making the substitution (A 1a) in (A 2), followed by ¢ = T +u, gives

1o [ e )
V2 (*+2a? cosu+1)

for |4| < arccos (a?), where positive roots are extracted, and

] €Xp (—ig) du,

~Ix

¢ = Ju—1arctan [sinu/(a?+cosu)].

Hence for a in (2.3) and |u| < ir, |¢| < in so that 1> 0 and S > 0 with equality if and
only if # = {n. Because z = in corresponds to Z, on %, no Stokes or anti-Stokes line from z, can
cross € between z, and z,, otherwise Cauchy’s theorem applied to the integrand of (A 2) round
a closed contour starting from z,, running along € and returning via a Stokes or anti-Stokes
line, is violated. There remains the possibility, however, that an anti-Stokes line joins z, and
z,.

For ¢ of (A 1a) in the range 0 < ¢ < i, (A 2) may be written

__1 [t __VI[sin@)] .
1_\/2 3 (a0t —2a2 cost+l)iexP( i) dt,

0

sin ¢
where ¥ =1t—3n+]arctan——+ {11c ,
2

a‘—cost
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according as cos¢ S a?. Here y is a monotonic increasing function of « in (2.3) and hence
—in <y < &m,

-with In < ¢ < &n when ¢ = Zr. It follows that as ¢ decreases from 2n to 0, %1 increases from
a negative to a positive value, so that one anti-Stokes line from z, crosses ¥ between z, and
z,. By changing the lower limit of the integral from £r to 0, it also follows that no anti-Stokes
line from z, crosses € between z, and z,. Because two anti-Stokes lines from z, lie inside €,
one remains inside €, and because it cannot cross the imaginary axis that is an anti-Stokes line
inside %, it must cross the real axis and by symmetry terminate at Z,. The remaining two
anti-Stokes line from z,, and the anti-Stokes line from z; in the first quadrant, must therefore
go to infinity in the first quadrant. Because they cannot cross, the anti-Stokes line from z,, and
that from z, crossing ¥ must go to infinity in the direction arg z = ir, the remaining line from
z, going to infinity in the direction argz = {x, as the two lines from z, going to infinity are
separated by a Stokes line that must go to infinity in the direction argz = {n. The structure
of the anti-Stokes lines is thus fixed for « in (2.3), and by use of symmetry are as shown in
figure 1.

As no Stokes line leaving z, crosses € between z, and Z, or terminates at Z,, the second Stokes
line leaving z, outside € must go to infinity along and above the positive real axis.

It remains to determine the path of the Stokes line leaving z, inside €, and the Stokes line
leaving z, in the first quadrant, which also starts inside €. Because these paths are not relevant
to the analysis required for this paper, all further details are omitted, and figure 1 completed
for sufficiently small values of a in (2.3).
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